
 

SpiralWatch™ 1.6 

Pressure-Aware Assurance for Human-Facing AI 

Technical White Paper (Engineering & IT Edition) 

Version 1.6 · January 2026 

Audience: Platform Engineering, ML Engineering, Security, SRE, Governance & Risk, 

Architecture Review Boards 

 

Executive Summary 

SpiralWatch™ 1.6 is a fail-closed assurance and certification harness for AI systems that 

interact directly with humans. It evaluates system behavior under human pressure, where real-

world failures most often occur, using deterministic, scenario-driven testing rather than abstract 

alignment metrics. 

Traditional AI safety practices emphasize model capability, policy compliance, and content 

controls. These approaches are necessary but insufficient. The most consequential failures 

emerge not from prohibited content, but from interaction dynamics when users are confused, 

distressed, seeking authority, or becoming dependent on the system. 

SpiralWatch addresses this gap by: 

• Modeling human pressure as a first-class risk dimension, 

• Enforcing explicit behavioral controls (the Stop Ladder), 

• Blocking deployment unless required behaviors are demonstrated, 

• Producing audit-ready PASS / FAIL evidence artifacts. 

SpiralWatch is intentionally scoped as a pre-deployment assurance system. It does not monitor 

live interactions or guarantee real-world outcomes. Its value lies in making readiness provable 

before scale. 

 



1. Why Human Pressure Breaks AI Systems 

Most AI failures do not occur during well-formed, low-stakes interactions. They occur when 

users are operating under pressure. Common patterns include: 

• Authority laundering: users defer judgment because the system appears confident or 

authoritative. 

• Premature certainty: the system provides decisive guidance despite ambiguity. 

• Unsafe refusal or escalation timing: the system either blocks too late or escalates 

incorrectly. 

• Dependency formation: users begin to rely on the system as a primary decision-maker 

or emotional support. 

These failures often: 

• Do not violate content rules, 

• Appear helpful in isolation, 

• Evade traditional safety testing. 

SpiralWatch is designed on the premise that risk follows human pressure states more reliably 

than prompt categories or policy tags. 

 

2. Design Principles 

SpiralWatch 1.6 is governed by six non-negotiable design principles that directly inform its 

architecture. 

Fail-Closed Governance 

Release decisions must be explicit and enforceable. A system that cannot demonstrate required 

behavior must not ship. 

Pressure-First Risk Modeling 

Human state (confusion, distress, authority seeking, dependency) is treated as a primary risk 

variable, not a secondary concern. 

Scenario-Driven Expectations 

Required behaviors are declared in advance. The system is evaluated against known expectations 

rather than inferred intent. 

Operational Controls 



Safety is enforced through testable mechanisms, not aspirational policy language. 

Evidence Over Claims 

Outputs must support review, audit, and governance scrutiny. 

Clear Runtime Boundary 

Assurance testing does not imply live monitoring or real-world guarantees. 

 

3. Human Pressure Quadrants (Formal Risk Model) 

SpiralWatch models risk using four human pressure quadrants. Each quadrant can appear 

independently, but risk increases non-linearly when pressures stack. 

• Cognitive pressure 

Confusion, overload, uncertainty, incomplete information. 

• Emotional pressure 

Distress, urgency, fear, shame, grief. 

• Authority pressure 

Permission-seeking, validation, deferral of judgment. 

• Dependency pressure 

Over-reliance, exclusivity, erosion of independent decision-making. 

SpiralWatch scenarios explicitly tag one or more pressure quadrants. Evaluation logic treats 

stacked pressures as higher-risk conditions requiring stricter behavioral controls. 



 

 

Figure 1 — Pressure patterns SpiralWatch 1.6 is designed to detect, resist, and fail closed 

against 

 

“As shown in Figure 1, pressure patterns often reinforce one another, creating conditions where 

ungoverned AI behavior can cause disproportionate harm.” 

 

4. The Stop Ladder: Operational Safety Control 

SpiralWatch enforces a Stop Ladder, an explicit behavioral contract that defines required 

system actions under pressure. 

SLOW 

The system must pause, acknowledge uncertainty, clarify constraints, and return agency to the 

user. 

SLOW is not delay—it is intentional deceleration to prevent premature commitment. 



STOP 

The system must refuse unsafe actions and redirect appropriately, with non-authoritative 

framing. 

ESCALATE 

The system must hand off to a human or institutional process using structured, privacy-

preserving context. 

Each evaluation scenario specifies which Stop Ladder tier is required. Failure to invoke the 

correct tier constitutes a certification failure. 

 

5. System Architecture Overview (SpiralWatch 1.6) 

SpiralWatch 1.6 is implemented as a modular evaluation harness that executes 

deterministically. 

Core components include: 

• Scenario Bank 

Curated interaction scenarios tagged with pressure quadrants, stacking rules, and required 

Stop Ladder moves. 

• Harness Runner 

A controlled execution environment that feeds scenarios to the target system and captures 

outputs. 

• Oracle Engine 

Rule-based evaluation logic that checks behavioral correctness, assigns reason codes, and 

classifies severity. 

• Certification Evaluator 

Aggregates results, verifies coverage minimums, and determines PASS / FAIL outcomes. 

• Evidence Pack Generator 

Produces versioned, hash-verified artifacts suitable for audit and review. 

SpiralWatch is model-agnostic and can wrap a wide range of AI systems, provided interfaces 

support deterministic testing. 

 

6. Scenario Bank and Required Moves 

Each scenario in the Scenario Bank defines: 



• The pressure quadrants involved, 

• Whether pressures are stacked, 

• The required Stop Ladder tier, 

• Disallowed behaviors. 

This approach reduces false positives by focusing on required moves rather than vague “good 

behavior.” The system is evaluated on whether it does what is explicitly required under defined 

conditions. 

 

7. Oracle Engine and Reason Codes 

The Oracle Engine applies deterministic rules to evaluate system responses. 

Key features include: 

• Explicit rule definitions per scenario, 

• Stability guarantees (same input → same evaluation), 

• Structured reason codes explaining failures, 

• Severity classification for governance triage. 

Reason codes are designed to be interpretable by both engineers and governance reviewers, 

forming a shared diagnostic language. 

 

8. Certification Model (PASS / FAIL) 

SpiralWatch uses binary, fail-closed certification. 

A system receives: 

• PASS if all required behaviors are demonstrated with sufficient coverage. 

• FAIL if any critical requirement is violated. 

Certification checks include: 

• Scenario coverage minimums, 

• Correct Stop Ladder invocation, 

• Absence of disallowed behaviors, 

• Handling of stacked pressure cases. 

This model prioritizes clarity over scoring. If a system fails, it does not ship. 



 

9. Evidence Packs and Auditability 

Each SpiralWatch run produces an evidence pack containing: 

• Structured result manifests, 

• Reason code summaries, 

• Coverage reports, 

• Version identifiers and integrity hashes. 

By default, evidence packs prioritize metadata over transcripts to minimize privacy risk. 

Transcript retention is opt-in and governed explicitly. 

Evidence packs are designed to support: 

• Internal risk review, 

• Partner due diligence, 

• Regulatory inquiry, 

• Post-incident analysis. 

 

10. CI/CD Integration 

SpiralWatch integrates directly into CI/CD pipelines. 

Typical behavior: 

• Certification failure triggers a non-zero exit code, 

• Release pipelines halt automatically, 

• Evidence artifacts are archived for review. 

This ensures governance decisions are enforced by tooling, not policy documents alone. 

 

11. Runtime Boundary (Explicit Non-Claims) 

SpiralWatch is a pre-deployment assurance system. 

It does not: 

• Monitor live user interactions, 

• Intervene at runtime, 



• Guarantee real-world outcomes. 

This boundary is intentional and necessary. SpiralWatch provides defensible claims about 

readiness, not omniscience. 

 

12. Intended Implementers 

SpiralWatch is best suited for organizations with: 

• Mature CI/CD practices, 

• Defined AI governance ownership, 

• Human-facing AI deployments, 

• Regulatory or reputational exposure. 

It is not intended for early experimentation without release discipline. 

 

Summary 

SpiralWatch™ 1.6 replaces vague alignment claims with pressure-aware, operational 

assurance. By enforcing explicit behavioral controls and fail-closed certification, it provides a 

practical governance layer for AI systems operating in human contexts—where the stakes are 

highest. 

 

SpiralWatch 1.6 — Assurance Appendix Pack 

Appendix A — Scenario Governance & Lifecycle 

Purpose 

The Scenario Bank is the primary risk surface of SpiralWatch. This appendix defines how 

scenarios are created, validated, maintained, and retired to ensure coverage remains relevant, 

auditable, and resistant to drift. 

Scenario Ownership Model 

Scenarios are governed by a Scenario Council, a cross-functional body with defined 

accountability: 

Role 



Responsibility 

Product Safety 

Defines human-risk categories and acceptable failure modes 

Security / Trust 

Contributes adversarial and misuse scenarios 

Domain SMEs 

Validate realism and domain appropriateness 

GRC / Legal 

Ensures regulatory and audit alignment 

Platform Owner 

Final approval and release authority 

Scenario Sources 

Scenarios are derived from: 

Incident postmortems (internal or industry) 

Red-team exercises 

Regulatory enforcement actions and guidance 

Customer-reported edge cases 

Emergent pattern analysis (pressure stacking trends) 

Scenario Quality Gates 

A scenario cannot be admitted unless it satisfies: 

Explicit pressure quadrant tagging (1–4, with stacking rationale if applicable) 

Declared risk class (informational → high-stakes) 

Required behavioral moves clearly enumerated 



Expected Stop Ladder tier explicitly justified 

Deterministic evaluability (no ambiguous success conditions) 

Lifecycle & Versioning 

Scenario banks are versioned and hashed 

Updates follow scheduled releases with an emergency hotfix path 

Scenarios are never silently modified—only superseded 

Certification always records scenario version + hash 

Appendix B — Oracle Engine Modes & Determinism 

Determinism Definition 

SpiralWatch defines determinism as: 

Given the same scenario bank version, policy bundle, model build, and harness configuration, 

the evaluation result (PASS/FAIL) and reason codes are identical. 

Determinism applies to certification outcomes, not to probabilistic model internals. 

Oracle Evaluation Modes 

The Oracle Engine supports multiple internal evaluation strategies: 

Mode 

Description 

Rule-based 

Deterministic checks against required moves and stop tiers 

Hybrid (optional) 

Learned classifiers for signal detection, frozen per bundle 

Declarative 

Scenario-declared pressure states with behavioral verification 

Pressure Handling 



Pressure states are scenario-asserted conditions, not inferred psychological diagnoses. 

The Oracle verifies whether the system responds appropriately under those declared conditions. 

Stability Guarantees 

Policy bundles freeze thresholds and evaluator versions 

Any change to evaluation logic requires a new bundle hash 

Certification artifacts always include oracle mode metadata 

Appendix C — Default Threshold & Severity Profile 

Rationale 

Thresholds are intentionally configurable to reflect organizational risk tolerance. However, 

SpiralWatch provides a reference baseline to support adoption and benchmarking. 

Default Enterprise Baseline (Illustrative) 

Condition 

Certification Outcome 

Any SEV-0 violation 

FAIL 

Stop Ladder tier mismatch in stacked pressure 

FAIL 

Missing required behavioral move above minimum 

FAIL 

Coverage below scenario minimum 

FAIL 

Severity Bands 

SEV-0: Irrecoverable human harm risk (automatic failure) 

SEV-1: High-risk misalignment requiring correction 



SEV-2: Degradation or missed opportunity to reduce pressure 

SEV-3: Observational / informational findings 

Customization 

Organizations may: 

Adjust coverage minimums by domain 

Escalate specific pressure combinations 

Introduce stricter fail conditions for regulated workflows 

All deviations are recorded in the policy bundle for audit traceability. 

Appendix D — Validation & Effectiveness Methodology 

Validation Objectives 

SpiralWatch validation focuses on behavioral correctness under pressure, not prediction of 

human emotion. 

Validation Tracks 

Incident Replay 

Convert known failures into scenarios 

Demonstrate certification failure prior to deployment 

Prospective Red-Team Testing 

Blind adversarial attempts to induce authority, dependency, or emotional leverage 

Measure tier correctness and refusal integrity 

Controlled Pilot Programs 

SpiralWatch gates releases 

Safety, escalation, and refusal metrics tracked longitudinally 

Core Metrics 

Tier accuracy rate 



Unsafe completion prevention rate 

Escalation appropriateness 

Over-refusal frequency 

Post-deployment incident deltas (where available) 

Evidence Standards 

Validation outputs are preserved as Evidence Packs with: 

Scenario references 

Policy bundle hashes 

Outcome summaries 

Cryptographic integrity checks 

Appendix E — Known Limitations & Failure Modes 

Declared Limitations 

SpiralWatch is pre-deployment assurance, not runtime monitoring 

It does not infer mental health states or diagnose users 

It cannot prevent failures arising from untested scenarios 

Anticipated Failure Modes 

Scenario gaps due to novel interaction patterns 

Distribution shifts in user behavior post-deployment 

Over-conservative configurations reducing usability 

Adversarial attempts to mask pressure signals 

Mitigation Strategies 

Continuous scenario bank expansion 

Periodic recertification 



Explicit deception-oriented scenarios 

Governance review of false positive trends 

Design Position 

SpiralWatch is designed to fail visibly and early, not silently in production. 

Certification failure is treated as a governance signal, not a system defect. 

 

 


